Discriminative Reranking for Spoken Language Understanding

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative models for spoken language understanding

This paper studies several discriminative models for spoken language understanding (SLU). While all of them fall into the conditional model framework, different optimization criteria lead to conditional random fields, perceptron, minimum classification error and large margin models. The paper discusses the relationship amongst these models and compares them in terms of accuracy, training speed ...

متن کامل

A Factored Discriminative Spoken Language Understanding for Spoken Dialogue Systems

This paper describes a factored discriminative spoken language understanding method suitable for real-time parsing of recognised speech. It is based on a set of logistic regression classifiers, which are used to map input utterances into dialogue acts. The proposed method is evaluated on a corpus of spoken utterances from the Public Transport Information (PTI) domain. In PTI, users can interact...

متن کامل

Discriminative Reranking for Natural Language Parsing

This paper considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this initial ranking, using additional features of the tree as evidence. We describe and compare two appr...

متن کامل

Generative and discriminative algorithms for spoken language understanding

Spoken Language Understanding (SLU) for conversational systems (SDS) aims at extracting concept and their relations from spontaneous speech. Previous approaches to SLU have modeled concept relations as stochastic semantic networks ranging from generative approach to discriminative. As spoken dialog systems complexity increases, SLU needs to perform understanding based on a richer set of feature...

متن کامل

Adapting Discriminative Reranking to Grounded Language Learning

We adapt discriminative reranking to improve the performance of grounded language acquisition, specifically the task of learning to follow navigation instructions from observation. Unlike conventional reranking used in syntactic and semantic parsing, gold-standard reference trees are not naturally available in a grounded setting. Instead, we show how the weak supervision of response feedback (e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Audio, Speech, and Language Processing

سال: 2012

ISSN: 1558-7916,1558-7924

DOI: 10.1109/tasl.2011.2162322